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Positive interspecific interactions are common-
place, and in recent years ecologists have begun to
realize how important they can be in determining
community and ecosystem dynamics. It has been
predicted that net positive interactions are likely
to occur in environments characterized by high
abiotic stress. Although empirical field studies
have started to support these predictions, little
theoretical work has been carried out on the
dynamic nature of these effects and their
consequences for community structure. We use a
simple patch-occupancy model to simulate the
dynamics of a pair of species living on an environ-
mental gradient. Each of the species can exist as
either a mutualist or a cheater. The results
confirm the prediction: a band of mutualists
tends to occur in environmental conditions
beyond the limits of the cheaters. The region
between mutualists and cheaters is interesting:
population density here is low. Mutualists
periodically occupy this area, but are displaced by
cheaters, who themselves go extinct in the
absence of the mutualists. Furthermore, the
existence of mutualists extends the area occupied
by the cheaters, essentially increasing their
realized niche. Our approach has considerable
potential for improving our understanding of
the balance between positive and negative
interspecific interactions and for predicting the
probable impacts of habitat loss and climate
change on communities dominated by positive
interspecific interactions.

Keywords: mutualism; facilitation; competition;
range limits; dispersal; spatial structure

1. INTRODUCTION

Positive interactions (mutualisms and facilitation) have
been observed in many different ecosystems, including
salt marshes, deserts, arctic tundra and alpine
systems. It is increasingly realized that these positive
interactions may be as important as negative
interactions (e.g. competition and predation)
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in determining community dynamics and ecosystem
processes, especially in severe environments
(see reviews by Bertness & Callaway 1994; Callaway
1995; Brooker & Callaghan 1998; Bruno et al. 2003).

There is a large body of theoretical literature
devoted to understanding the consequences of
negative interactions for community dynamics (e.g.
Amarasekare 2003 and references within; Murrell &
Law 2003). Considerable potential exists for apply-
ing similar analytical and simulation methods to the
study of mutualistic interactions, and indeed some
progress has been made in this area (Wilson &
Nisbet 1997; Amarasekare 2004). Several studies
have developed relatively simple spatial models for
looking at the dynamics of altruists of a single
species (Matsuda 1987; Taylor 1992; Wilson er al.
1992). Recently, Yamamura ez al. (2004) extended
this approach to investigate the dynamics of mutual-
ists and cheaters in a spatial model incorporating
simple costs and benefits of being a mutualist. Their
results confirmed those of previous studies in show-
ing that mutualists can persist only if dispersal is
limited (Yamamura et al. 2004). However, with
limited dispersal, mutualists can invade a population
of cheaters if the ratio of cost to benefit is low. They
also demonstrate that mutualists are more likely to
become established if the intrinsic reproductive rate
is low. This impinges on an important question:
under what environmental conditions should we
expect positive interactions to be most prevalent?

Simple verbal models have suggested that positive
interactions should be more important in very severe
environments because of the proposed positive
relationship between the ameliatory impact of neigh-
bours and the severity of the environment, as well as
the reduced importance of negative interactions in
systems where the abiotic environment dominates
success (Brooker & Callaghan 1998). By developing
more advanced model systems we are able to examine
the dynamic impact of interactions through time, and
test our current predictions concerning the long-term
success of different interaction ‘strategies’ at different
positions across the environmental gradient in a way
that would be virtually impossible through field
experimentation.

2. THE MODEL

Our model is similar to that described by Yamamura
et al. (2004), except that we introduce an environ-
mental gradient. We represent the landscape as a two-
dimensional lattice. At any point in time each cell
may be empty, occupied by an individual of just one
species, or occupied by an individual of each
species. Both species can occur as mutualists and
non-mutualists (or cheaters). We use Ay and Ay to
represent the frequencies of mutualists and non-
mutualists of species A, and Byy and By to represent
the frequencies of mutualists and non-mutualists of
species B. Ag and Bg are the frequencies of sites
not occupied by individuals of species A and B.
Conceptually it may be easiest to imagine two parallel
lattices: one populated by individuals of species A4,
and the other by individuals of species B. This
dual-lattice description was suggested by Doebeli &
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Knowlton (1998) and used by Yamamura er al.
(2004). We will adopt a similar notation here, and
like Yamamura er al. (2004), we have the following
identities for the two lattices:

and

Individuals of species A benefit from being in the
presence of a mutualist of species B. Similarly,
individuals of species B benefit from occupying the
same site as a mutualistic individual of species
A. Here, we assume that the benefit gained by being
associated with a mutualist is an increased reproduc-
tive rate. Other potential benefits that we do not
consider here include reduced mortality or greater
dispersal ability. We assume that all mutualists incur
a cost of being mutualistic, and that this cost takes
the form of reduced reproductive potential.

The probability of a non-mutualist of either species
reproducing is r in the absence of a mutualist of the
other species, and r+b& if a mutualist of the other
species is present. The probability of a mutualist
reproducing is r—c¢ in the absence of a mutualist of

(a)

(c)

the other species, and r+b—c¢ in the presence of a
mutualist of the other species. When reproduction
occurs, a propagule, identical to the parent, is
dispersed to one of the cells in the parent’s neigh-
bourhood. The neighbourhood is defined as the
nearest four cells (Von Neuman neighbourhood).
Propagules only establish at the site to which they
disperse when the site is currently unoccupied by that
species. During a single time-interval, all individuals
suffer the same probability of death, d.

We extend the simulation model described
by Yamamura ez al. (2004) by introducing an
environmental gradient. We assume that in a harsh
environment the basic probability of reproduction (r)
is lower. For each run of the simulation we define
Tmax and 7min. Tmax represents the habitat quality at
the right edge of the lattice and r,;, the quality at the
left edge. A linear gradient is used to determine the
quality of sites along the length of the lattice. For
simplicity, we assume that the probability of mortality
is the same across the gradient. We also assume that
b and ¢ remain constant across the gradient.

3. RESULTS AND DISCUSSION
When an environmental gradient is imposed on the
landscape it frequently results in the coexistence of

(b

(d)

Figure 1. Positive interactions dominate the harsher environmental conditions, but are absent where conditions are more
favourable. The spatial patterns shown in these four plates are typical of those observed for a wide range of parameter space.
Dark red and dark blue indicate patches where a single ‘cheater’ species and a single ‘mutualist’ species occur, respectively.
Bright red and bright blue indicate patches where both ‘cheater’ species and both ‘mutualist’ species occur, respectively.
Patches occupied by one ‘cheater’ and one ‘mutualist’ are shown in green. (@) 7max=0.3, d=0.07, 6=0.3 and ¢=0.02.
(0) rmax=0.15, d=0.04, b=0.13 and ¢=0.02. (¢) rmax=0.3, d=0.05, 6=0.3 and ¢=0.05. (d) rmax=0.1, d=0.03, 6=0.2

and ¢=0.05. The landscape is 200X 200 patches.
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Figure 2. Mean rates of patch occupancy along the gradient. (a) and (¢) show the results when cheaters and mutualists are
both present. (b) and (d) illustrate the effect that one species has on the other. In (@) and (c¢), red shading shows the
abundance of cheaters and blue shading the abundance of mutualists. In (b) and (d), light blue lines show the patch
occupancy obtained by mutualists in the presence of cheaters, and dark blue lines their occupancy in the absence of cheaters.
Similarly, paler red lines show the occupancy obtained by cheaters in the presence of mutualists and darker red lines their
occupancy in the absence of cheaters. The model was run for 2500 time-steps and average patch occupancy over the final
500 time-steps was calculated. (a) and (b) use the same parameter values as figure la; (¢) and (d) use the same parameter

values as figure 15.

mutualists and non-mutualists. There is a striking
pattern of spatial segregation, with the mutualists
occurring in the harshest conditions and the non-
mutualists in the more favourable environment (see
figure 1). This result supports that of Wilson & Nisbet
(1997) who found strong spatial patterns of strategy
segregation in similar model systems. They also tie in
closely with data from numerous field experiments
showing a shift from the general dominance of
competition in benign conditions to facilitation in
severe conditions (e.g. Choler ez al. 2001; Callaway
et al. 2002). Intriguingly, we often find a zone between
the mutualists and non-mutualists that has a low rate
of occupancy (see figures 1 and 2). This no-man’s
land represents an area where mutualists would be
able to persist in the absence of cheaters, but where
cheaters are unable to persist in the absence of
mutualists. Mutualists periodically colonize this area,
but they are vulnerable to invasion by cheaters from
the other side of the zone. After the cheaters invade,
both mutualists and non-mutualists are doomed to
become locally extinct until the next wave of mutual-
ists moves in. This results in a dynamic boundary that
separates the mutualists from the non-mutualists. This
is an interesting result. In natural communities we do
not observe zones with reduced vegetation cover at
such a species interface because additional species may
fill the empty space, but we might observe an area
of increased turnover of both the cheater and the
mutualist. However, this is an output from the model
that lends itself to further investigation and which
necessitates the collection of suitable field data for
validation or refutation. From this simulation we
predict that regions with an average net interaction of
zero, which result from the balance of positive and

Biol. Letz. (2005)

negative effects, might be associated with greater rates
of community turnover.

In this model, mutualistic interactions permit
species to exist in harsher environments than would
otherwise be possible. Figure 2 enables a comparison
of the environmental conditions that are occupied by
mutualists in the absence of cheaters, cheaters in the
absence of mutualists, and cheaters and mutualists co-
occurring. Unsurprisingly, a positive interaction
enables both mutualistic partners to persist in harsher
conditions than their cheating counter-parts. It is
worth noting that the cheaters can sometimes extend
their range into harsher conditions when mutualists are
present (figure 2b6). Our model thus supports the
prediction that facilitation might extend the realized
niche of species (Bruno ez al. 2003). Also, for some
parameterizations, the mutualists do not occupy as
many patches in harsh conditions when cheaters are
present (figure 2d ). This is because the cheaters reduce
the abundance of mutualists in better-quality habitats,
and this reduces the strength of a mutualist source that
supports a mutualist sink in the harsher conditions
(figure 2d). However, this effect is dependent upon the
dispersal capabilities of the mutualists.

We have assumed that being in the presence of a
mutualist confers a benefit in terms of an increased
probability of reproduction, and that being a mutual-
ist incurs a cost paid through reduced reproduction.
However, for some associations it may be that these
benefits and costs change the probability of mortality
rather than reproduction. Results from a modified
model show that all of the results and patterns are
qualitatively very similar regardless of whether costs
and benefits act on reproduction or mortality.

Models such as the one described in this paper
provide considerable scope for future work on positive
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interactions. We identify a few areas where we feel
future work might be valuable. Stanton (2003)
emphasized the need for theoretical work that
moves beyond the traditional view of a single pair
of interacting partner species, and instead considers
guilds of mutualistic species on one or both sides of
the interaction. Extending the model presented in this
paper to incorporate a greater number of species
should be relatively straightforward and would enable
us to model the impact of changes in interactions on
biodiversity. We have not considered any evolution in
the strength of the positive interactions. Doebeli &
Knowlton (1998) recognized that evolution
along a continuum of interaction strengths (with a
corresponding trade-off) is likely, and constructed
a model that allowed this evolution to occur. It would
be interesting to explore the evolutionary impact of
interaction strength on an environmental gradient.
Predictions for the selective impact of positive inter-
actions in plants from arctic and alpine systems were
made by Brooker & Callaghan (1998). They pointed
out that such adaptations might already exist in arctic
and alpine species. However, in field studies it is not
possible to examine whether facilitation alone is
capable of producing such adaptations. With such
a model system this would be possible.

Here, we have incorporated spatial environmental
variability in the form of a simple environmental
gradient. In reality, the pattern of spatial variability is
likely to be far more complex. Travis & Dytham
(2004) presented a method for simulating patterns of
habitat availability at species range margins, and these
methods offer promise for future work investigating
how patterns of habitat availability determine the
ability of species and communities (including those
with positive interactions) to shift their range in
response to climate change (Travis 2003).

We believe that combining modelling and field
studies offers considerable promise for improving our
understanding of the role of positive interactions in
structuring communities. We have demonstrated that
models can be used to generate testable predictions.
Some empirical studies (Callaway ez al. 2002; Maestre &
Cortina 2004) have already generated the type of data
that will allow these models to be validated and refined,
but further field-based studies are needed.
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